

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2000 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 15 December 2000. Printed in the United States of America.

Print:

 ISBN 0-7381-2480-X SH94849

PDF:

 ISBN 0-7381-2481-8 SS94849

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 1284.4-2000

IEEE Standard for
Data Delivery and Logical Channels
for IEEE 1284 Interfaces

Sponsor

Microprocessor and Microcomputer Standards Committee

of the

IEEE Computer Society

Approved 21 June 2000

IEEE-SA Standards Board

Abstract:

 A device to carry on multiple, concurrent exchanges of data and/or control information
with another device across a single point-to-point link allowed by the packet protocol is described
in this standard. The protocol is not a device control language. The protocol provides basic
transport-level flow control and multiplexing services. The multiplexed information exchanges are
independent, and blocking of one has no effect on any other. The protocol shall operate over inter-
faces such as described in IEEE Std 1284-2000.

Keywords:

 channelized protocol, IEEE 1284, logical channels, multiple logical channels (MLC),
transport protocol

IEEE Standards

 documents are developed within the IEEE Societies and the Standards Coordinating Com-
mittees of the IEEE Standards Association (IEEE-SA) Standards Board. Members of the committees serve
voluntarily and without compensation. They are not necessarily members of the Institute. The standards
developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as
well as those activities outside of IEEE that have expressed an interest in participating in the development of
the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard. Every IEEE Standard is subjected to review at least every five years for
revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is rea-
sonable to conclude that its contents, although still of some value, do not wholly reflect the present state of
the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership
affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of
text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the
Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of
all concerned interests, it is important to ensure that any interpretation has also received the concurrence of a
balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating
Committees are not able to provide an instant response to interpretation requests except in those cases where
the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

IEEE is the sole entity that may authorize the use of certification marks, trademarks, or other designations to
indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the
Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Cus-
tomer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copy-
right Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying patents for
which a license may be required by an IEEE standard or for conducting inquiries into
the legal validity or scope of those patents that are brought to its attention.

Copyright © 2000 IEEE. All rights reserved.

iii

Introduction

(This introduction is not part of IEEE Std 1284.4-2000, IEEE Standard for Data Delivery and Logical Channels for
IEEE 1284 Interfaces.)

This standard was formally started as an IEEE project in January 1996. Members of the IEEE P1284.4
Working Group would like to thank the Hewlett-Packard Company, and the IEEE 1284.1 and IEEE 1284.3
committees for their efforts in establishing the foundation for this standard and allowing this committee to
include their work as the basis for much of this standard.

At the time this standard was completed, the key contributors to the IEEE P1284.4 Working Group were as
follows:

Larry A. Stein,

Chair

Mark T. Edmead,

Secretary

Bob McComiskie,

Secretary

Brian Batchelder,

Editor

Walt Scheiderich,

Editor

The following members of the balloting committee voted on this standard:

Jim Anderson
Lee Farrel
Robert Gross
Joe Halpern
Reed Hinkel
Monte Johnson
Laurie Lasslo
Greg LeClair

Paul Lindemuth
Raymond Lutz
Mike Moldovan
Ron Norton
Rick Pennington
Greg Shue
Lance Spaulding

Bill Stanley
Ron Talwalker
Randy Turner
William Wagner
Andrew Warner
Forrest D. Wright
Atsushi Yuki
Steve Zilles

John L. Cole
Dante Del Corso
Stephen L. Diamond
Sourav K. Dutta
Mark T. Edmead
Charlotte Ersmarker
Julio Gonzalez-Sanz

Donald N. Heirman
Thomas M. Kurihara
Laurie Lasslo
Franck Leprevost
Joseph R. Marshall
Mike Moldovan
Jeff Rackowitz

David Rockwell
Marius Seritan
Kerry Shore
Howard Stanley
Larry A. Stein
Forrest D. Wright
Janusz Zalewski

iv

Copyright © 2000 IEEE. All rights reserved.

When the IEEE-SA Standards Board approved this standard on 21 June 2000, it had the following
membership:

Donald N. Heirman,

 Chair

James T. Carlo,

Vice Chair

Judith Gorman,

Secretary

*Member Emeritus

Also included is the following nonvoting IEEE-SA Standards Board liaison:

Alan Cookson,

NIST Representative

Donald R. Volzka,

TAB Representative

 Greg Kohn

IEEE Standards Project Editor

Satish K. Aggarwal
Mark D. Bowman
Gary R. Engmann
Harold E. Epstein
H. Landis Floyd
Jay Forster*
Howard M. Frazier
Ruben D. Garzon

James H. Gurney
Richard J. Holleman
Lowell G. Johnson
Robert J. Kennelly
Joseph L. Koepfinger*
Peter H. Lips
L. Bruce McClung
Daleep C. Mohla

James W. Moore
Robert F. Munzner
Ronald C. Petersen
Gerald H. Peterson
John B. Posey
Gary S. Robinson
Akio Tojo
Donald W. Zipse

Copyright © 2000 IEEE. All rights reserved.

v

Contents

1. Overview.. 1

1.1 Scope.. 1
1.2 Purpose... 1

2. Definitions.. 1

2.1 General terminology .. 1
2.2 IEEE 1284.4-specific terminology... 2

3. Features and compliance.. 4

3.1 Overview.. 4
3.2 Features .. 4
3.3 Compliance criteria.. 5
3.4 Multiple logical channels (MLC) compatibility criteria.. 5

4. Theory of operation of the IEEE 1284.4 protocol ... 5

4.1 Overview.. 5
4.2 General packet structure .. 5
4.3 Communication procedures ... 6
4.4 Service discovery ... 9
4.5 Data transfer and flow control ... 9

5. IEEE 1284.4 transactions... 16

5.1 Overview.. 16
5.2 Transaction summary... 16
5.3 Conversation control transactions.. 18
5.4 Connection control transactions... 23

6. Data link service requirements... 36

6.1 Overview.. 36
6.2 Required services ... 36

Annex A (informative) Bibliography... 38

Annex B (normative) Service names registry.. 39

Annex C (informative) IEEE 1284.4 architecture ... 41

Annex D (informative) Example IEEE 1284.4 application programming interface (API) 42

Annex E (informative) Implementation issues .. 50

Copyright © 2000 IEEE. All rights reserved.

vi

Copyright © 2000 IEEE. All rights reserved.

1

IEEE Standard for
Data Delivery and Logical Channels
for IEEE 1284 Interfaces

1. Overview

1.1 Scope

The packet protocol described by this standard allows a device to carry on multiple, concurrent exchanges of
data and/or control information with another device across a single point-to-point link. The protocol is not a
device control language. The protocol provides basic transport-level flow control and multiplexing services.
The multiplexed information exchanges are independent, and blocking of one has no effect on any other. The
protocol shall operate over IEEE Std 1284-2000 [B2]

1

 interfaces and may operate over other interfaces, such
as RS-232, Universal Serial Bus (USB), and that of IEEE Std 1394-1995 [B5].

1.2 Purpose

IEEE Std 1284-2000 [B2] defines and describes an updated personal computer (PC) parallel interface by
adding multiple modes of operation that provide for higher speed, bidirectional communication between
devices. IEEE Std 1284-2000 [B2] does not provide anything beyond a physical protocol. IEEE Std 1284.4-
2000 specifies a point-to-point protocol with one or more layers above the physical interface and below the
application. These layers take on the functions and characteristics of the transport and session layers of the
open systems interconnect (OSI) model.

2. Definitions

2.1 General terminology

The following terms and acronyms are used in this standard. The definitions are not intended to be absolute,
but they do reflect the use of the terms in this standard.

2.1.1 big-endian:

 A data format where the most significant byte of a multibyte object is at the lowest address
and the least-significant byte is at the highest address.

1

The numbers in brackets correspond to those of the bibliography in Annex A.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

2

Copyright © 2000 IEEE. All rights reserved.

2.1.2 byte:

 An 8 bit value.

NOTE—In this standard, bits are read left to right with the most significant bit (MSB) labeled 7 to least significant bit
(LSB) labeled 0 as shown in Figure 1.

2.1.3 connection:

 A persistent communications path between two endpoints.

2.1.4 device control language:

 A language used to monitor and/or control the state of a device.

2.1.5 endpoint:

 A consumer or producer of data on a communication link.

2.1.6 flow control:

 The function performed by a receiving entity to limit the amount of data that is sent by a
transmitting entity.

2.1.7 logical channel:

 One connection over a single physical communication link. There may be multiple
logical channels over a single physical communication link.

2.1.8 open systems interconnect (OSI) model:

 A seven-layer network communications model developed
by an International Organization for Standardization (ISO) subcommittee that governs communications
interchange between systems. The model is an internationally accepted framework of standards for intersys-
tem communications.

2.1.9 packet:

 A group of bytes, including address, data, and control elements.

2.1.10 point-to-point communications:

 Communications that take place between exactly two devices.

2.1.11 service discovery:

 The function of providing transport clients with the ability to dynamically query
service availability within a peer transport entity.

2.2 IEEE 1284.4-specific terminology

2.2.1 application:

 A software component that uses the IEEE 1284.4 transport.

2.2.2 blocked channel:

 A channel with at least one blocked endpoint.

2.2.3 blocked endpoint:

 An endpoint that is unable to send data on a connection due to lack of credit. A
blocked endpoint becomes unblocked when it is granted credit to send data on that connection.

2.2.4 channel:

An independently flow-controlled connection between a socket on the primary device and a
socket on the secondary device. It provides a logical conduit for moving data between the two endpoints.

2.2.5 client:

 Name used to refer to the software component on one device that uses the services provided by
a server on another device. The communication between the client and the server is managed by the protocol
defined in this standard.

Bit 7—MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0—LSB

Figure 1—Byte layout

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved.

3

2.2.6 command:

 The instruction sent from an initiator to a target directing the target to execute a specified
process.

2.2.7 conversation:

 Canonical name given to the interactions between two IEEE 1284.4 peers during the
period of time bracketed between corresponding

Init

 and

Exit

 transactions.

2.2.8 credit:

 A value issued by an IEEE 1284.4 implementation on behalf of an endpoint indicating the num-
ber of packets that may be received by that endpoint.

2.2.9 end-of-message packet:

 The last packet of a message in the data stream.

2.2.10 initiator:

 The IEEE 1284.4 implementation that initiated a transaction by sending a command.

2.2.11 message:

 A set of ordered data (possibly empty) that includes a message boundary indication.
Message data may span multiple packets. A packet shall not hold data from more than one message.

2.2.12 multiple outstanding transactions:

 A state where more than one transaction has been issued and is
pending completion.

2.2.13 out-of-band packet:

 A packet of exceptional data in the data stream. This type of packet may contain
special information relating to the data at this position in the data stream, for example, “end of job.” Informa-
tion contained in the out-of-band packet is outside of the scope of IEEE Std 1284.4-2000.

2.2.14 piggyback credit:

 Used to describe the inclusion of credit inside an IEEE 1284.4 packet header. By
using piggyback credit, IEEE 1284.4 can reduce the overhead of

Credit

 transactions when processing a
channel on which data is flowing bidirectionally.

2.2.15 primary device:

 The device that issued the

Init

 transaction that started the current IEEE 1284.4
conversation. There is no priority implied by the assignment of primary and secondary devices once the
conversation has been established. The assignment of primary status is used only to identify the device that
contains the primary sockets.

2.2.16 primary socket identifier (PSID):

 A socket number identifying a particular endpoint on the primary
device.

2.2.17 reply:

 The response sent from a target to an initiator indicating that the target has successfully or
unsuccessfully executed the process specified by the command originally sent from the initiator to the target.

2.2.18 reserved:

 Any protocol elements identified as “reserved” are intended for future standardization.
Reserved elements shall not be used. Reserved fields or bits shall be set to 0 and shall not be checked. Values
not defined in IEEE Std 1284.4-2000 are reserved.

2.2.19 secondary device:

 The device that was the target of the

Init

 transaction that started the current IEEE
1284.4 conversation. There is no priority implied by the assignment of primary and secondary devices once
the conversation has been established. The assignment of secondary status is used only to identify the device
that contains the secondary sockets.

2.2.20 secondary socket identifier (SSID):

 A socket number identifying a particular endpoint on the
secondary device.

2.2.21 server:

 The software component on one device that provides services for use by clients on the same
or another device. The transfer of data between the client and the server is managed by the protocol defined
in IEEE Std 1284.4-2000.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

4

Copyright © 2000 IEEE. All rights reserved.

2.2.22 service name:

 The canonical name of a particular service available for use by an IEEE 1284.4 client.

2.2.23 socket:

 Canonical name given to an IEEE 1284.4 endpoint to which, or from which, data is
transmitted.

2.2.24 socket identifier (socket ID):

 A byte used to uniquely identify the socket. A socket ID can be well
known or it can be dynamically assigned.

2.2.25 target:

 The peer IEEE 1284.4 implementation to which the initiator’s command is being sent.

2.2.26 transaction:

 A IEEE 1284.4 command exchange, including both the command and the reply.

2.2.27 transaction channel:

 The channel used for IEEE 1284.4 commands and replies. The primary socket
identifier and the secondary socket identifier for the transaction channel are both 0x00.

3. Features and compliance

3.1 Overview

It is the intention of this standard to complement various types of bidirectional, point-to-point links, such as
those specified in IEEE Std 1284-2000 [B2], by providing a simple, flexible, and scaleable transport
protocol. For the purposes of this standard, a point-to-point link may be a virtual connection over other
physical topologies. It is assumed that this point-to-point link is error free.

A device that implements IEEE 1284.4 functionality provides the ability to carry on multiple, concurrent,
independent exchanges of information, whether control or data, over a single point-to-point link. This ser-
vice is provided by use of the packet-based, nonblocking, flow control system defined in this standard.

3.2 Features

IEEE Std 1284.4-2000 specifies a packet-based, bidirectional, connection-oriented, peer-to-peer communi-
cation protocol for a point-to-point link encompassing the following features:

a) Multiple, concurrent, logical channels: nonblocking, independent information exchange

b) Flow control to keep the channels independent

1) Negotiation of packet sizes

2) Transmission rate control (also known as pacing)

3) Specification of minimum and maximum packet sizes

c) Service discovery

1) Dynamic query and mapping of channel address space

2) Service names maintained in a third-party, open, persistent registry (see Annex B)

d) Low system overhead: a small, fixed header allowing easy encoding and decoding of packets

e) Extensibility

1) Control byte provides simple out-of-band and end-of-message signaling

2) Within a conversation, services can be assigned to previously unallocated sockets

f) Information exchange independence: the transport protocol is not dependent upon the data being
exchanged

g) Physical link independence: the protocol can be used in conjunction with any physical link, provided
a data link layer of sufficient functionality is available (see Clause 6)

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved.

5

3.3 Compliance criteria

An IEEE 1284.4-compliant device shall provide all commands and functionality in the following clauses:

— Clause 4: Theory of operation of the IEEE 1284.4 protocol

— Clause 5: IEEE 1284.4 transactions

A compliant device shall use a data link that meets the requirements enumerated in Clause 6.

IEEE 1284.4-compliant devices are not required to implement multiple outstanding transactions (see 4.5.6).

3.4 Multiple logical channels (MLC) compatibility criteria

IEEE 1284.4 is based upon the MLC protocol developed by Hewlett-Packard Company. MLC devices are
not necessarily compliant with IEEE 1284.4. For details on the MLC protocol, refer to the bibliography of
Annex A.

4. Theory of operation of the IEEE 1284.4 protocol

4.1 Overview

IEEE 1284.4 is a credit-based transport protocol. It provides a mechanism to establish, configure, and
control communication between two endpoints. It provides this functionality through a well-defined packet
structure and transaction protocol. IEEE 1284.4 transactions are symmetrical: each command has a corre-
sponding reply.

IEEE 1284.4 transports client data on logical channels. These logical channels are multiplexed on a single
physical link. Client data is exchanged over data channels. IEEE 1284.4 transactions are exchanged over the
IEEE 1284.4 transaction channel. All client data and IEEE 1284.4 transactions are encapsulated in packets.
Packet transfer is managed using a credit-based flow control process to pace the exchange.

IEEE 1284.4 also provides a service discovery mechanism to dynamically map service names to socket
numbers.

4.2 General packet structure

All IEEE 1284.4 packets follow the general structure illustrated in Table 1. Each packet shall contain the
6-byte header and zero or more data bytes. The packet header contains the five fields detailed in Table 2:
primary socket identifier (PSID), secondary socket identifier (SSID), Length, Credit, and Control. To elimi-
nate ambiguity, all numbers in the following descriptions that are in hexadecimal are designated beginning
with “0x” and are in big-endian byte order. Packet fields are listed in the order they are transmitted reading
from left to right. The length includes the header. The maximum amount of data that may be transmitted in
the payload field is 65 529 bytes (0xFFF9). The offset and length values specified in Table 2 are unsigned
integers.

If PSID and SSID indicate any other channel, the payload field contains application data for that channel.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

6

Copyright © 2000 IEEE. All rights reserved.

4.3 Communication procedures

4.3.1 IEEE 1284.4 conversation management

A conversation is the set of interactions between two IEEE 1284.4 peers during the period of time bracketed
between corresponding

Init

 and

Exit

 transactions.

The following subclauses describe how IEEE 1284.4 conversation management is handled, including the
IEEE 1284.4 transactions that are used to establish and terminate the conversation. Once the conversation is

Table 1—IEEE 1284.4 packet structure

Header Payload

PSID
1 byte

SSID
1 byte

Length
2 bytes

Credit
1 byte

Control
1 byte

0–0xFFF9 bytes

Table 2—IEEE 1284.4 packet field descriptions

Name Offset Length Description

PSID 0x00 1 byte An unsigned byte indicating the primary socket ID of
the packet.

SSID 0x01 1 byte An unsigned byte indicating the secondary socket ID of
the packet.

Length 0x02 2 bytes An unsigned word that specifies the length, in bytes, of
the entire packet. The length includes the packet header.
Valid values range from 0x0006 to 0xFFFF.

Credit 0x04 1 byte A piggyback credit field that specifies the number of
additional packet credits the sender of the packet is
issuing to the receiver of the packet. These credits are
for data to be sent in the future by the receiver of this
packet on the channel indicated by the PSID and SSID
fields.

Control 0x05 1 byte A bit field containing information for controlling
operation of the IEEE 1284.4 protocol. It is a bit-
encoded field with the following definitions:

Bit(s) Definition
7-2 Reserved
1 0 = Normal Packet
 1 = End-of-message packet
0 0 = Normal packet
 1 = Out-of-band packet

Payload 0x06 0–65 529
bytes

If PSID and SSID indicate the IEEE 1284.4 transaction
channel, the payload field contains an IEEE 1284.4
command or reply.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved.

7

established, 4.3.2 explains how the channels are opened, data is transferred, and channels are closed. Details
of the transactions are discussed in Clause 5.

4.3.1.1 Conversation initiation

When one IEEE 1284.4 peer wishes to establish an IEEE 1284.4 conversation, it does so by initiating an

Init

transaction on the IEEE 1284.4 transaction processor channel. The target of the

Init

 transaction will com-
plete the transaction.

The device that generates the successful

Init

 transaction becomes the primary device for the duration of the
IEEE 1284.4 conversation. The device that completes the

Init

 transaction becomes the secondary device for
the duration of the IEEE 1284.4 conversation.

During this exchange each side of the link indicates which revision of the protocol it supports. All IEEE
1284.4 implementations shall support the 0x20 revision of the protocol defined by this standard.

4.3.1.2 Conversation termination

The

Exit

 transaction is used as a companion to the

Init

 transaction. It is used to terminate IEEE 1284.4
conversations. The normal termination process is to first complete all outstanding transactions and close all
open channels, and then to initiate an

Exit

 transaction.

4.3.2 Channels

A channel is defined as a logical connection between two socket endpoints. The minimum number of sup-
ported channels is one: the IEEE 1284.4 transaction channel. The maximum number of channels is 65 026
((255

×

 255) + 1). Implementations may support fewer channels.

4.3.2.1 Socket IDs

A PSID and SSID are used to identify the endpoints of a specific channel on which communication occurs.
Socket IDs range from 0x00 to 0xFF. Communication between IEEE 1284.4 peers occurs on the IEEE
1284.4 transaction channel. The PSID and SSID for the transaction channel are both 0x00.

Other sockets are dynamically allocated by IEEE 1284.4 peers and assigned to applications wishing to com-
municate with services on the other side of the link. Service discovery (see 4.4) provides a mechanism used
to locate those services. Unlike other channels, the transaction channel is assumed to be open when IEEE
1284.4 is initialized. No open or close of the transaction channel is allowed. See 4.3.2.2 and 4.5.5 for details
on the transaction channel.

4.3.2.2 Packet size

The maximum size of packets in both primary-to-secondary and secondary-to-primary directions on the
IEEE 1284.4 transaction channel is fixed at 64 bytes (6 byte header plus up to 58 bytes for the commands
and replies). Fewer than 64 bytes may be sent in an IEEE 1284.4 transaction packet.

The maximum packet size on all other channels is limited by the two-byte length field to a maximum of
65 535 bytes (6 byte header plus up to 65 529 bytes of data). The actual maximum packet sizes supported
will be implementation specific. When a channel is opened, the maximum sizes of both primary-to-
secondary and secondary-to-primary packets are negotiated and can be different. Packets smaller than the
negotiated maximum size may be sent.

The minimum packet size is 6 bytes (a 6 byte header plus 0 bytes of data).

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

8

Copyright © 2000 IEEE. All rights reserved.

4.3.2.3 Opening a channel

Once the IEEE 1284.4 conversation has started, channels may be established between endpoints on the IEEE
1284.4 peers. Channels are established using the

OpenChannel

 transaction. Data packets shall only be
transmitted on a channel while that channel is open.

4.3.2.4 Channel credit

Credit is the fundamental mechanism by which the flow of data on IEEE 1284.4 channels is controlled (see
4.5). A receiving IEEE 1284.4 peer, having knowledge of how many packets it can accept, uses credit to con-
trol the number of packets the sender can transmit across each open channel. Using credit to control the flow
of data allows IEEE 1284.4 to avoid the overhead of interlocked send-receive-acknowledge transmissions.
This provides a simple mechanism for the receiver to prevent the sender from overwhelming its resources
with packet transmissions. Credit is granted by

OpenChannel

,

Credit

, or

CreditRequest

 transactions, or
by piggyback credit in a packet.

4.3.2.5 Channel data exchange

Once a channel is open and credit has been granted, data packets may be freely exchanged between the two
endpoints as long as the sender has credit to do so. Credit may be piggybacked in the data packets. If the data
stream is bidirectional (i.e., data is flowing in a primary-to-secondary direction as well as a secondary-to-pri-
mary direction), piggybacking credit reduces the crediting traffic.

4.3.2.6 Closing a channel

When either IEEE 1284.4 peer determines the channel is no longer necessary, it closes the channel by initiat-
ing a

CloseChannel

 transaction.

4.3.3 Special data packets

4.3.3.1 End-of-message packets

A message is a set of ordered data (possibly empty) that includes a message boundary indication. Message
data may span multiple packets. A packet shall not hold data from more than one message. Setting the “end-
of-message packet” flag in the packet header indicates the message boundary. A packet with the end-of-
message flag set may or may not contain data. The message boundary is after the last byte of data in the
packet, or after the last byte of data previously transferred if the flagged packet has no data. The sending
client indicates which packets are to be marked end-of-message. The IEEE 1284.4 peer transport shall pass
the end-of-message indication to the receiving client. All data within each channel shall be delivered in
order. All other processing of end-of-message data shall be in the same manner as non end-of-message data.
End-of-message packets are not supported on the IEEE 1284.4 transaction channel.

4.3.3.2 Out-of-band packets

Packets can be marked as out-of-band by setting the “out-of-band packet” flag in the packet header. The
sending client indicates which packets are to be marked out-of-band. The IEEE 1284.4 peer transport will
pass the out-of-band indication to the receiving client. Out-of-band data shall not be split across multiple
packets. Out-of-band data shall not be combined with in-band data. All data within each channel shall be
delivered in order, regardless if it is in-band or out-of-band. All other processing of out-of-band data shall be
in the same manner as non out-of-band data. Out-of-band packets are not supported on the IEEE 1284.4
transaction channel.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved.

9

4.3.4 Errors

4.3.4.1 Error indications

Two mechanisms are provided for communicating errors to the IEEE 1284.4 peer. Errors detected within a
transaction can be communicated in the transaction reply. Other errors can be communicated using the

Error

packet.

4.3.4.2 Response time

There are no response time requirements specified by the IEEE 1284.4 protocol. Implementers should con-
sider using timers to avoid potential deadlock situations.

4.3.4.3 Other error conditions

Packets other than the

Init

 command received outside of a conversation shall be ignored. The implementer
shall handle any other unspecified error conditions.

4.4 Service discovery

4.4.1 Overview

Service discovery provides a standard method for IEEE 1284.4 client applications to locate a particular
service application. It provides the ability to dynamically determine service name to socket ID mapping.

4.4.2 Service names

Canonical names of services are maintained by an administrative authority. Names may be registered by
vendors through the administrative authority, along with a description of the service functionality. IEEE
1284.4 service names shall be expressed within the 7-bit ASCII character set with a maximum length of 40
characters. Service names are limited to the set of uppercase letters, digits, and the punctuation character
hyphen. They must start with a letter, and end with a letter or digit. The registry process is defined in
Annex B.

4.4.3 Service discovery protocols

Service discovery is supported through the

GetSocketID

 and

GetServiceName

 transactions. These comple-
mentary transactions allow name-to-socket and socket-to-name conversions.

4.5 Data transfer and flow control

4.5.1 Introduction

Within the context of IEEE 1284.4, flow control ensures that a sender only sends data when the receiver is
ready to accept the data. This prevents a channel from blocking other channels. It also allows the transport
layer to avoid retransmitting data. To provide flow control in IEEE 1284.4, the receiver informs the sender
how much data can be sent. The sender then limits the amount it sends to this value.

The maximum amount of data that may be sent is communicated in two steps. First, the maximum size of the
packets to be exchanged is negotiated. Second, during data transfer, the receiver of the data communicates to
the sender the number of packets that can be sent (credits). The product of the maximum packet size and the
number of credits specifies the maximum amount of data that can be sent by the sender before additional

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

10

Copyright © 2000 IEEE. All rights reserved.

credit is granted. The maximum size of packets remains constant while the channel is open. The receiver
enables further data transfer by granting more credits to the sender.

4.5.2 Packet size negotiation

Packet size negotiation sets the maximum size of packets, per channel, in both the primary-to-secondary and
secondary-to-primary directions. This is done when the connection is established, using the OpenChannel
transaction. The packet size can differ with direction. A zero-length packet size indicates that no data packets
will be sent in that direction. The maximum size of packets remains constant while the channel is open.
Packet size negotiation allows optimization of data transfers within the current IEEE 1284.4 conversation.

4.5.3 Credit

The receiver grants credit to the sender to indicate that the receiver is prepared to accept a specific number of
data packets. Credit is associated with packets on a one-for-one basis; i.e., each credit grants the sender
permission to send one packet. An endpoint may only send data across a channel if it has the credit to do so.

Credit used for IEEE 1284.4 communications is accumulative. When a sender is granted credit, it adds the
additional credit to any unused credit it has already been granted. As the sender sends packets, it subtracts
the corresponding credits from its available credit. Once a sender’s credit reaches zero, it shall not send any
more packets until it is granted more credit for that channel.

Initial credit can be granted in the OpenChannel transaction. Once a channel is open, credit can be granted
via a Credit transaction or requested via a CreditRequest transaction. To avoid the overhead of these
explicit credit commands, credit can also be granted by piggybacking credit in IEEE 1284.4 packets. All out-
standing credit for a given channel shall be discarded upon the completion of a CloseChannel transaction.

Flow control of the IEEE 1284.4 conversation is controlled by IEEE 1284.4 peers managing the credit by
using the modes detailed in 4.5.4 and 4.5.5, and preventing deadlock as described in 4.5.7.

4.5.4 IEEE 1284.4 data flow control

The sender controls a parameter to manage the receiver’s granting of credit. The sender sets this parameter
using a field in the OpenChannel and CreditRequest commands. The receiver grants credit via the Open-
ChannelReply, Credit, or CreditRequestReply commands, or by piggybacking credit in a data packet.

The credit control parameter is called MaximumOutstandingCredit. MaximumOutstandingCredit is the
maximum amount of credit that the sender will need at any given time. The receiver shall attempt to main-
tain the sender’s credit balance equal to the value of this parameter.

The initial value of the MaximumOutstandingCredit parameter is set by the OpenChannel transaction. The
sender may subsequently change the credit parameter at any time by sending a CreditRequest command.
Changing the MaximumOutstandingCredit parameter does not change the available credit that the sender
has already accumulated.

The MaximumOutstandingCredit parameter defines the following modes:

a) “No credit” mode: When the MaximumOutstandingCredit parameter is set to 0x0000 the sender is
asking the receiver to send no credit.

This may be used at the start of communications by an OpenChannel command when the sender
wants to open a channel prior to having data ready to send and does not want to burden the receiver
with having to supply credit until it is needed. It may also be used at the end of a channel packet
exchange; e.g., the sender wishes to keep the channel open but has no more data to send at that time.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 11

b) “Unlimited credit” mode: When the MaximumOutstandingCredit parameter is set to 0xFFFF, the
sender is asking the receiver to send as much credit as possible.

This may be used when the sender has a large or unknown number of packets to send. As it
approaches the end of job, the sender may monitor the number of packets left to be sent so that it can
switch to “no credit” mode.

c) “Maintain credit” mode: When the MaximumOutstandingCredit parameter is in the range 0x0001
to 0xFFFF, the receiver will try to keep the sender’s outstanding credit at the amount specified by the
MaximumOutstandingCredit parameter.

This mode may be used when the sender will be sending bursts of packets, where the burst size will
never exceed the MaximumOutstandingCredit parameter. Since the maximum number of credits
needed at any time is known, the receiver can efficiently manage its buffers.

The sender is not required to use all of the above modes. For example, the sender may use unlimited credit
mode for every channel and allow the receiver to clean up resources only as channels are closed. The sender
may also start in “no credit” mode, switch to “maintain credit” mode to send bursts of packets, and finish by
switching back to “no credit” mode. The three modes provide the sender with flexibility in managing its
need for credit and not burden the receiver with unnecessary requests or crediting.

The credit modes are hints for the receiver. The receiver may grant more than the requested number of cred-
its, even in “no credit” mode.

Table 3 and Table 4 are examples of flow control of IEEE 1284.4 data packets associated with opening a
channel between primary and secondary IEEE 1284.4 peers, granting initial credit, sending data, granting
additional credit, and closing the channel. Time increases with each row as one moves down the tables from
top to bottom. In addition, only the sending of packets is shown. The reception of packets is implied (e.g., an
Init command is sent by the primary IEEE 1284.4 peer but the tables do not show the secondary IEEE
1284.4 peer receiving it). Table 3 and Table 4 do not show the transactions required to establish the IEEE
1284.4 conversation. Transaction channel flow control is detailed in 4.5.5.

Table 3 is an example of a unidirectional channel. Unidirectional channels are used when data flows in only
one direction across the link. Common uses of unidirectional channels include print data and scan data.

Table 4 is an example of a bidirectional channel. Bidirectional channels are used when data flows in both
directions across the link. Common uses of bidirectional channels include control, status, and other request-
reply service.

4.5.5 IEEE 1284.4 transaction channel flow control

Flow control for the transaction channel is similar to flow control for data channels, with the following
exceptions:

a) IEEE 1284.4 command and reply packets have a maximum size of 64 bytes.

b) The transaction channel is always open. Neither OpenChannel nor CloseChannel transactions of
the transaction channel are permitted.

c) After a successful Init, there is credit on the transaction channel for one command in each direction,
regardless of the previous credit values. Commands contain piggyback credit of exactly one (1),
which is used for the reply to that command. Replies contain piggyback credit of exactly one (1),
which is used for the next command.

d) The transaction channel defaults to “maintain credit” mode, with a MaximumOutstandingCredit of
one (1) (see 4.5.4).

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

12 Copyright © 2000 IEEE. All rights reserved.

e) Transaction channel credit shall be used to complete outstanding transactions before it is used to
issue new transactions. Only when there is more credit than there are pending replies can a new
transaction be issued.

f) Error and Init transactions can always be sent. Credit balances are unaffected by the Error com-
mand. The Init transaction resets the credit balance to one (1).

Table 3—Flow control of IEEE 1284.4 data packets (undirectional panel)

Time Primary IEEE 1284.4
peer

Secondary IEEE 1284.4
peer

Primary peer
data credit

Secondary
peer data

credit

0 0 0

1 OpenChannel
(unlimited credit mode)

0 0

2 OpenChannelReply
grant 5 credits

0 + 5 = 5 0

3 Primary to secondary
Data Packet 1

5 – 1 = 4 0

4 Primary to secondary
Data Packet 2

4 – 1 = 3 0

5 Primary to secondary
Data Packet 3

3 – 1 = 2 0

6 Credit
grant 2 credits

2 0

7 CreditReply 2 + 2 = 4 0

8 Primary to secondary
Data Packet 4

4 – 1 = 3 0

9 Primary to secondary
Data Packet 5

3 – 1 = 2 0

10 CloseChannel 2 0

11 CloseChannelReply 0 0

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 13

In Table 5 and Table 6, only the sending of packets is shown. The reception of packets is implied (e.g., an
Init command is sent by the primary IEEE 1284.4 peer but the table does not show the secondary IEEE
1284.4 peer receiving it).

Table 5 shows an example of the commands and credits associated with establishing an IEEE 1284.4 conver-
sation, and opening and closing a channel between a primary and secondary IEEE 1284.4 peer. Note that
after a successful Init transaction both the primary and secondary peers have one credit for issuing a
command.

4.5.6 Multiple outstanding transactions

An initiator is permitted to issue multiple outstanding transactions; i.e. an initiator may issue another trans-
action without waiting for the completion of a previous transaction. This is only permitted when the target
has granted extra credit on the transaction channel. An initiator can issue only one outstanding transaction
referencing a particular channel. The transactions do not need to be completed in order. The reply carries
enough information to match it to the appropriate command. IEEE 1284.4 implementations are not required
to support multiple outstanding transactions. The CreditRequest transaction is used to request extra credit
on the transaction channel.

Table 4—Flow control of IEEE 1284.4 data packets (request-reply channel)

Time Primary IEEE 1284.4
peer

Secondary IEEE 1284.4
peer

Primary peer
data credit

Secondary
peer data

credit

0 0 0

1 OpenChannel
(maintain credit mode –
max outstanding credit = 1)

0 0

2 OpenChannelReply
grant 1 credit
(maintain credit mode –
 max outstanding credit = 1)

0 + 1 = 1 0

5 Primary to secondary
Packet 1
Piggyback 1 credit

1 – 1 = 0 0 + 1 = 1

8 Secondary to primary
Packet 1
Piggyback 1 credit

0 + 1 = 1 1 – 1 = 0

5 Primary to secondary
Packet 2
Piggyback 1 Credit

1 – 1 = 0 0 + 1 = 1

8 Secondary to primary
Packet 2
Piggyback 1 credit

0 + 1 = 1 1 – 1 = 0

10 CloseChannel 1 0

11 CloseChannelReply 0 0

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

14 Copyright © 2000 IEEE. All rights reserved.

Flow control for multiple outstanding transactions differs from 4.5.5 as follows:

a) IEEE 1284.4 initiators may request multiple outstanding transactions by setting MaximumOutstand-
ingCredit to a value greater than one (1) using a CreditRequest command. Targets that support
multiple outstanding transactions can then enable them by granting additional credit on the transac-
tion channel in the CreditRequestReply or a subsequent Credit command. Implementations that do
not support multiple outstanding commands shall not grant any additional credit.

b) Each IEEE 1284.4 peer can issue only one outstanding transaction referencing a particular channel.
For example, it is only acceptable to issue more than one Credit transaction concurrently if the
Credit transactions refer to different channels.

Table 6 shows an example of multiple outstanding transactions. Included are the commands and credits
associated with establishing an IEEE 1284.4 conversation, discovering the socket IDs for two services, and
opening channels to those services.

4.5.7 Deadlock avoidance and blockage prevention

IEEE 1284.4 implementations shall avoid deadlocking on credit. Deadlock occurs whenever the receiver is
waiting for the sender to request credit while the sender is waiting for the receiver to grant credit. This is an
exceptional condition, since either the sender failed to request credit or the receiver failed to grant credit. All
senders shall implement a “fail-safe” mechanism to request credit if a deadlock occurs. This mechanism can
be as simple as using a relatively long deadlock time-out before requesting credit. The length of this time-out
should be sufficiently long to avoid asking for credit before the receiver has had the chance to consume the
previously sent data and grant more credit.

IEEE 1284.4 implementations shall prevent blocking of a channel due to activity on other channels. Exam-
ples of buffer allocation issues are included in E.4.

Table 5—Flow control of IEEE 1284.4 transaction packets

Time Primary IEEE
1284.4 peer

Secondary IEEE
1284.4 peer

Primary peer
transaction

channel credit

Secondary peer
transaction

channel credit

0 Undefined Undefined

1 Init Unchanged 1

2 InitReply 1 1

3 OpenChannel 1 – 1 = 0 1 + 1 = 2

4 OpenChannelReply 0 + 1 = 1 2 – 1 = 1

5 CloseChannel 1 + 1 = 2 1 – 1 = 0

6 CloseChannelReply 2 – 1 = 1 0 + 1 = 1

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 15

Table 6—Flow control of IEEE 1284.4 transaction packets
(multiple outstanding transactions)

Time Primary IEEE 1284.4
peer

Secondary IEEE 1284.4
peer

Primary peer
transaction

channel credit

Secondary peer
transaction

channel credit

0 Undefined Undefined

1 Init Unchanged 1

2 InitReply 1 1

3 CreditRequestRequest
MaximumOutstandingCredit
of 3 on transaction channel

1 – 1 = 0 1 + 1 = 2

4 CreditRequestReply
Grant 0 additional credits
on transaction channel

0 + 1 = 1 2 – 1 = 1

5 Credit
Grant 2 additional credits
on transaction channel

1 + 1 + 2 = 4 1 – 1 = 0

6 CreditReply 4 – 1 = 3 0 + 1 = 1

7 GetSocketID “Service A” 3 – 1 = 2 1 + 1 = 2

8 GetSocketID “Service B” 2 – 1 = 1 2 + 1 = 3

9 GetSocketIDReply
“Service A”

1 + 1 = 2 3 – 1 = 2

10 GetSocketIDReply
“Service B”

2 + 1 = 3 2 – 1 = 1

11 OpenChannel “Service A” 3 – 1 = 2 1 + 1 = 2

12 OpenChannel “Service B” 2 – 1 = 1 2 + 1 = 3

13 OpenChannelReply
“Service B”

1 + 1 = 2 3 – 1 = 2

14 OpenChannelReply
“Service A”

2 + 1 = 3 2 – 1 = 1

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

16 Copyright © 2000 IEEE. All rights reserved.

5. IEEE 1284.4 transactions

5.1 Overview

The transactions described in this clause are composed of transport commands and replies. The initiator of a
transaction is the IEEE 1284.4 peer that sends the command starting the transaction and receives the reply
completing the transaction. The target of a transaction is the IEEE 1284.4 peer that receives the command
starting the transaction and sends the reply completing the transaction. The initiator assumes the transaction
to have started when it sends the command and to be complete when it receives the reply. The target assumes
the transaction to have started when it receives the command and to be complete when it sends the reply.

Transactions can be simultaneously initiated by both peers. Neither peer shall assume that the next incoming
packet will be the reply to the command it just sent.

5.2 Transaction summary

Table 7 summarizes the transactions exchanged between IEEE 1284.4 peers. These transactions consist of
matched commands and replies. Reply codes are formed by setting bit 7 of the corresponding command
code. Command codes can range from 0x00 to 0x7F. Reply codes can range from 0x80 to 0xFF. Unassigned
values are reserved. All of these commands are sent over the IEEE 1284.4 transaction channel.

Table 7—Summary of transactions

Transaction Command Reply Purpose

Init 0x00 0x80 Establish an IEEE 1284.4 conversation.

OpenChannel 0x01 0x81 Open a channel between a primary and second-
ary socket and set the initial crediting mode.

CloseChannel 0x02 0x82 Close a channel between a primary and second-
ary socket.

Credit 0x03 0x83 Grant credit on a specific channel.

CreditRequest 0x04 0x84 Request credit for, and set the credit mode of, a
specific channel.

0x05 0x85 Deprecated—do not use.a

aThese values are used by Hewlett-Packard’s MLC protocol and are deprecated for compatibility purposes.

0x06 0x86 Deprecated—do not use.a

0x07 0x87 Deprecated—do not use.a

Exit 0x08 0x88 Terminate the current IEEE 1284.4
conversation.

GetSocketID 0x09 0x89 Request the socket ID of the specified service.

GetServiceName 0x0A 0x8A Request the name of the service on the specified
socket.

0x0B–0x7E 0x8B–0xFF Reserved.

Error 0x7F Indicates an error has occurred that cannot be
reported in an IEEE 1284.4 reply.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 17

Table 8 summarizes the possible result values for all of the IEEE 1284.4 transactions.

Table 8—Transaction result value summary

Value Result

0x00 The command was successful.

0x01 Unable to begin IEEE 1284.4 conversation at this time. The initiator can retry at a later time.

0x02 Unable to support requested revision. The initiator can attempt to negotiate to a common
revision.

0x03 The command was rejected because the requested channel was the IEEE 1284.4 transaction
channel, which cannot be closed.

0x04 Sufficient resources to support the requested connection are not currently available. The
channel is not open.

0x05 The connection has been denied. The channel is not open.

0x06 This channel is already open. The channel remains open, with credit unchanged by the
OpenChannel transaction.

0x07 Credit overflow—the specified credit causes the total outstanding credit for this direction on
this channel to exceed 0xFFFF. On a credit overflow failure the target shall keep its credit
count as it was before the Credit command. The credit is ignored.

0x08 The command was rejected because this channel is not open.

0x09 There is no service on the specified socket. The channel is not open.

0x0A Service name to socket ID mapping failed, either because the service was not available
(GetSocketID) or there was no service on the specified socket (GetServiceName).

0x0B The Init transaction can not be completed due to an outstanding Init transaction initiated by
this IEEE 1284.4 peer. The initiator of this transaction should wait a random length of time
and then try again to establish the conversation.

0x0C One or both of the packet sizes requested was invalid (0x0001–0x0005). The channel is not
open.

0x0D The packet sizes requested in both directions were 0x0000. No data can be transferred. The
channel is not open.

0x0E The command was rejected because the requested credit mode is not supported on the
specified channel.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

18 Copyright © 2000 IEEE. All rights reserved.

5.3 Conversation control transactions

A conversation is the set of interactions between two IEEE 1284.4 peers during the period of time bounded
by the completion of corresponding Init and Exit transactions. This subclause describes the IEEE 1284.4
transactions that establish, manage, and terminate the conversation.

5.3.1 Init

The Init transaction is used to establish an IEEE 1284.4 conversation. A conversation shall be established
before any subsequent IEEE 1284.4 communications take place.

The initiator of the conversation sends an Init command with the requested IEEE 1284.4 revision. If the tar-
get supports the requested IEEE 1284.4 revision and can begin a IEEE 1284.4 conversation, the target shall
send an InitReply with a matching revision and a success result value. If the target does not support the
requested IEEE 1284.4 revision, the target shall send an InitReply with the highest revision it does support
(less than that requested by the initiator), and a result value indicating that it is unable to support the
requested revision.

When an Init transaction is completed with a result value indicating success, the IEEE 1284.4 conversation
has been established at the revision level requested by the initiator. The initiator of the successful Init trans-
action becomes the primary device for that conversation. The target of the successful Init transaction
becomes the secondary device for that conversation.

A random back-off strategy shall be implemented to successfully establish the IEEE 1284.4 conversation
and to establish the primary and secondary devices if Init transactions are initiated by both IEEE 1284.4
peers at the same time. If an Init command is received by an IEEE 1284.4 peer that has initiated its own out-
standing Init transaction, it shall send an InitReply with a failure result value as shown in Table 11. After
the IEEE 1284.4 peer receives the InitReply completing its outstanding Init transaction, the peer shall then
wait a random length of time and again initiate an Init transaction. This process continues until one of the
Init transactions completes successfully. It is illustrated in Figure 2.

Figure 2—Random back-off of simultaneous Init transactions

Device A Device B

Init Init

InitReply (fail) InitReply (fail)

Init

InitReply (success)

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 19

Init and InitReply may be sent at any time, even if there is no credit on the IEEE 1284.4 transaction chan-
nel. Sending the command during an IEEE 1284.4 conversation will cause that conversation to be reset and a
new conversation to start. The reset implicitly terminates all pending transactions for the conversation, and
closes all channels associated with the conversation.

Init and InitReply consume no credit. The initiator of an Init transaction may not receive an InitReply. In
this situation, it is valid to send another Init, because Init consumes no credit. The piggyback credits
received with Init and InitReply become the initial credit balance of the IEEE 1284.4 transaction channel. If
more than one Init command is received, only the credit from the final Init is valid.

If there is no reply to the Init command, the initiator shall wait some time before initiating another Init
command. This will avoid issuing a second Init command before the target has had enough time to reply to
the first Init command. Since it is still possible that the target may reply to each command, any extra
InitReply replies received by the primary IEEE 1284.4 peer before the replies to any other commands and
before receiving any commands from the secondary IEEE 1284.4 peer shall be ignored.

Table 9 and Table 10 show the contents of the Init command and reply packets, including the packet header.
Table 11 shows the InitReply result values.

Table 9—Init command

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x0008

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x00

Revisiona

aIndicates the revision of IEEE 1284.4 to which the initiator is attempting to
negotiate. This provides some indication as to which commands and replies are
recognized by the initiating IEEE 1284.4 peer. The initial and current revision of
the IEEE 1284.4 protocol is 0x20. Future revisions shall be greater than 0x20. All
implementations are required to support the base (0x20) revision of the IEEE
1284.4 protocol.

0x07 0x20

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

20 Copyright © 2000 IEEE. All rights reserved.

5.3.2 Exit

The Exit transaction is used to terminate the current IEEE 1284.4 conversation. Either IEEE 1284.4 peer can
initiate an Exit transaction, regardless of which peer started the current conversation. To terminate normally,
complete all outstanding IEEE 1284.4 transactions and close all open channels before initiating the Exit
transaction.

If an IEEE 1284.4 peer determines that it is not possible to terminate normally, it is acceptable to initiate the
Exit transaction without completing outstanding IEEE 1284.4 transactions or closing open channels. The
Exit transaction causes all outstanding transactions to be aborted, all open channels to be closed, and the
conversation to be terminated.

Table 10—InitReply packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x0009

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x80

Result 0x07 (see Table 11)

Revisiona 0x08 0x20

aWhen the Result field indicates success, Revision indicates the actual revision to
be used, which shall match the Revision requested by the initiator. When the
Result field indicates that the target can not support the Revision requested by the
initiator, Revision indicates the highest revision of IEEE 1284.4, less than the re-
quested revision, the target of the Init transaction implements.

Table 11—InitReply result values

Value Result

0x00 The command was successful.

0x01 Unable to begin IEEE 1284.4 conversation at this time. The initiator can retry at
a later time.

0x02 Unable to support requested revision. The initiator can attempt to negotiate to a
common revision.

0x0B The Init transaction can not be completed due to an outstanding Init transaction
initiated by this IEEE 1284.4 peer. The initiator of this transaction should wait a
random length of time and then try again to establish the conversation.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 21

The initiator of the Exit transaction begins the transaction by sending an Exit command. No other IEEE
1284.4 transactions shall be initiated once the Exit transaction begins. Upon receiving the Exit command,
the target of the transaction optionally completes any outstanding transactions, and then completes the Exit
transaction by sending the ExitReply. It is not necessary for the initiator to wait for the ExitReply. The
IEEE 1284.4 conversation is considered terminated after the completion of the Exit transaction.

If both IEEE 1284.4 peers initiate Exit transactions at the same time, both Exit transactions shall be
completed. The IEEE 1284.4 conversation is considered terminated after the completion of both Exit
transactions.

Each peer shall have no more than one Exit transaction outstanding at any time (see 4.5.5).

Data received prior to issuing or receiving an Exit command shall be delivered. Data received after issuing
an Exit command may be delivered. Any packets received after receiving an Exit command shall be ignored,
since the conversation has been terminated.

Table 12 and Table 13 show the contents of the Exit and ExitReply packets, including the packet header.
Table 14 shows ExitReply result values.

Table 12—Exit packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x0007

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x08

Table 13—ExitReply packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x0008

Credit 0x04 0x00

Control 0x05 0x00

Command 0x06 0x88

Resulta

aIndicates the outcome of the Exit command. This field shall take on the value shown in
Table 14.

0x07 (See Table 14)

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

22 Copyright © 2000 IEEE. All rights reserved.

5.3.3 Error

The Error packet is used to report errors that can not be reported in an IEEE 1284.4 transaction.

The Error packet does not have a reply. It may be sent at any time, even if there is no credit on the IEEE
1284.4 transaction channel. Error consumes no credit. Piggyback credit can not be granted via the Error
packet.

Error packets do not implicitly close connections nor terminate the conversation.

Table 15 shows the contents of the Error packet, including the packet header.

Table 14—ExitReply result values

Value Result

0x00 The command was successful.

Table 15—Error packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x000A

Credit 0x04 0x00

Control 0x05 0x00

Command 0x06 0x7F

ErrorPSIDa

aSpecifies the PSID of the packet in which the error was detected.

0x07 0x00–0xFF

ErrorSSIDb

bSpecifies the SSID of the packet in which the error was detected.

0x08 0x00–0xFF

ErrorCodec

cSpecifies what type of error has occurred. This field can take on the values listed in
Table 16.

0x09 (See Table 16)

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 23

5.4 Connection control transactions

IEEE 1284.4 connections consist of a channel specified by primary and secondary socket identifiers. This
subclause describes the IEEE 1284.4 transactions that are used to discover endpoints, and establish, manage,
and terminate connections.

5.4.1 GetSocketID

This transaction is used to request the socket ID for a specified service.

The initiator of the GetSocketID transaction begins the transaction by sending a GetSocketID command
with the specified service name. Upon receiving the GetSocketID command, the target of the transaction
locates the specified service and sends the GetSocketIDReply. Requesting the socket ID of a zero-length
service name shall result in an unsuccessful completion.

Once a service has been reported to be mapped to a particular socket ID, that mapping shall remain
unchanged until the IEEE 1284.4 conversation is terminated. No other service shall be mapped to that partic-
ular socket ID. The mapped service may be unbound from that particular socket ID, but may not be mapped
to any other socket ID. If it is again bound during the same conversation, it shall be mapped to the same
socket ID.

Multiple GetSocketID transactions may be outstanding at any time, if credit to issue them is available on the
transaction channel (see 4.5.5).

Service names are between 1 byte and 40 bytes (0x28) and are character restricted as per 4.4.2. Service
names are registered using the mechanism defined in Annex B.

Table 17 and Table 18 show the contents of the GetSocketID and GetSocketIDReply packets, including the
packet header. Table 19 shows the GetSocketIDReply result values.

Table 16—Error command ErrorCode values

ErrorCode Error description

0x80 A malformed packet was received. All fields in the packet shall be ignored.

0x81 A packet was received for which no credit had been granted. The packet was ignored.

0x82 A 1284.4 reply was received that could not be matched to an outstanding command.
The reply was ignored. Credit granted in the reply was ignored.

0x83 A packet of data was received that was larger than the negotiated maximum size for the
socket indicated. The data was ignored

0x84 A data packet was received for a channel that was not open.

0x85 A reply packet with an unknown Result value was received.

0x86 Piggybacked credit received in a data packet caused a credit overflow for that channel.

0x87 A reserved or deprecated IEEE 1284.4 command or reply was received. Any piggy-
backed credit was ignored.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

24 Copyright © 2000 IEEE. All rights reserved.

Table 17—GetSocketID command packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x0007 + length of service name

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x09

ServiceName 0x07 (service name)

Table 18—GetSocketIDReply packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x0009 + length of service name

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x89

Resulta 0x07 (see Table 19)

SocketIDb 0x08 0x00–0xFF

ServiceNamec 0x09 (service name)

aIndicates the outcome of the GetSocketID transaction. This field can take on the values shown in
Table 19.

bThe socket ID of the specified service. This field is not valid if the specified service does not exist.
cThe service name as specified in the GetSocketID command packet.

Table 19—GetSocketIDReply result values

Value Result

0x00 The command was successful.

0x0A Service name to socket ID mapping failed, either because the service was
not available (GetSocketID) or there was no service on the specified socket
(GetServiceName).

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 25

5.4.2 GetServiceName

This transaction is used to request the name of the service on the specified socket.

The initiator of the GetServiceName transaction begins the transaction by sending a GetServiceName
command with the specified socket ID. Upon receiving the GetServiceName command, the target of the
transaction identifies the service on the specified socket and sends the GetServiceNameReply.

Once a service has been reported to be mapped to a particular socket ID, that mapping shall remain
unchanged until the IEEE 1284.4 conversation is terminated. No other service shall be mapped to that partic-
ular socket ID. The mapped service may be unbound from that particular socket ID, but may not be mapped
to any other socket ID. If it is again bound during the same conversation, it shall be mapped to the same
socket ID.

Multiple GetServiceName transactions may be outstanding at any time, if credit to issue them is available
on the transaction channel (see 4.5.6).

Service names are between 1 byte and 40 bytes (0x28) and are character restricted as per 4.4.2. Service
names are registered using the mechanism defined in Annex B.

Table 20 and Table 21 show the contents of the GetServiceName and GetServiceNameReply packets,
including the packet header. Table 22 shows GetServiceNameReply result values.

Table 20—GetServiceName command packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x0008

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x0A

SocketIDa

aThe socket ID of the requested service.

0x07 0x00–0xFF

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

26 Copyright © 2000 IEEE. All rights reserved.

5.4.3 OpenChannel

This transaction is used to open and configure a channel between two IEEE 1284.4 endpoints.

The initiator of the transaction starts by sending an OpenChannel command with the socket IDs specifying
the desired channel. Upon receiving the OpenChannel command, the target of the transaction checks the
validity of the command, allocates the necessary resources for the channel, and sends the OpenChannelRe-
ply. The target shall choose valid maximum packet sizes for the channel, less than or equal to the maximum
packet sizes requested by the initiator. A maximum packet size of 6 indicates data will not be sent in that
direction, although data packets without a payload may still be sent to carry piggyback credit (see 4.5.3). A
maximum packet size of zero (0) indicates that packets will not be sent in that direction. An OpenChannel
command with maximum packet sizes of zero (0) or 6 in both directions is not supported as it results in a
channel on which no data can be transferred. The channel is considered to be open only after the completion
of a successful OpenChannel transaction.

Table 21—GetServiceNameReply packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x0009 + length of service name

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x8A

Resulta 0x07 (see Table 22)

SocketIDb 0x08 0x00–0xFF

ServiceNamec 0x09 (service name)

aIndicates the outcome of the GetServiceName transaction. This field can take on the values
shown in Table 22.

bThe socket ID as specified in the GetServiceName command packet.
cA successful completion with a zero-length service name indicates an unnamed service on this
socket. This field is not valid if there is no service mapped to this socket.

Table 22—GetServiceNameReply result values

Value Result

0x00 The command was successful.

0x0A Service name to socket ID mapping failed, either because the service was
not available (GetSocketID) or there was no service on the specified socket
(GetServiceName).

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 27

It is possible for both IEEE 1284.4 peers to initiate OpenChannel transactions for the same channel
simultaneously. This does not cause an error. If the initiator of an OpenChannel transaction receives an
OpenChannel command for the same channel before receiving the OpenChannelReply completing the
OpenChannel transaction it initiated, it shall send a successful OpenChannelReply with

a) Packet sizes equal to the minimum requested in the two commands and

b) The same value for MaximumOutstandingCredit provided in its OpenChannel command.

The channel is considered to be open after the initiator has received the OpenChannelReply completing its
transaction and sent the OpenChannelReply completing the peers transaction. The following table is an
example of simultaneous OpenChannel transactions. Only the sending of packets is shown. The reception
of packets is implied.

Since the IEEE 1284.4 transaction channel is always open, it does not require an OpenChannel transaction.
An OpenChannel transaction for the transaction channel shall be handled the same as any other Open-
Channel transaction received for a channel that is already open.

Multiple OpenChannel transactions may be outstanding at any time, if each transaction refers to a different
channel and credit to issue them is available on the transaction channel (see 4.5.6).

Time Primary IEEE 1284.4 peer Secondary IEEE 1284.4 peer

0

1 OpenChannel

— Primary SocketID = 0x01
— Secondary SocketID = 0x01
— MaximumPrimaryToSecondaryPacketSize =
 0x8000
—MaximumSecondarytoPrimaryPacketSize =
 0x0400
— MaximumOutstandingCredit = 0xFFFF

OpenChannel

— Primary SocketID = 0x80
— Secondary SocketID = 0x01
— MaximumPrimaryToSecondaryPacketSize =
 0x4000
— MaximumSecondarytoPrimaryPacketSize =
 0x1000
— MaximumOutstandingCredit = 0x0001

2 OpenChannelReply

— Result = 0x00
— Primary SocketID = 0x80
— Secondary SocketID = 0x01
— MaximumPrimaryToSecondaryPacketSize =
 0x4000
— MaximumSecondarytoPrimaryPacketSize =
 0x0400
— MaximumOutstandingCredit = 0xFFFF

3 OpenChannelReply

— Result = 0x00
— Primary SocketID = 0x80
— Secondary SocketID = 0x01
— MaximumPrimaryToSecondaryPacketSize =
 0x4000
— MaximumSecondarytoPrimaryPacketSize =
 0x4000
— MaximumOutstandingCredit = 0x0001

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

28 Copyright © 2000 IEEE. All rights reserved.

Table 23 and Table 24 show the contents of the OpenChannel and OpenChannelReply packets, including
the packet header. Table 25 shows the OpenChannelReply result values.

Table 23—OpenChannel command packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x000F

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x01

SocketID (primary)a

aSpecifies the socket of the requested channel on the primary IEEE 1284.4 peer.

0x07 0x01–0xFF

SocketID (secondary)b

bSpecifies the socket of the requested channel on the secondary IEEE 1284.4 peer.

0x08 0x01–0xFF

MaximumPrimaryToSecondaryPacketSizec

cIndicates the maximum size of data packets in the primary-to-secondary direction. A value of 0x0000
indicates primary-to-secondary data packets are not supported.

0x09 0x0000 or 0x0006–0xFFFF

MaximumSecondaryToPrimaryPacketSized

dIndicates the maximum size of data packets in the secondary-to-primary direction. A value of 0x0000
indicates secondary-to-primary data packets are not supported.

0x0B 0x0000 or 0x0006–0xFFFF

MaximumOutstandingCredite

eIndicates the maximum outstanding credit requested by the initiator of this transaction for initiator to
target data. See 4.5.3.

0x0D 0x0000–0xFFFF

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 29

Table 24—OpenChannelReply packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x0012

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x81

Resulta 0x07 (see Table 25)

SocketID (primary)b 0x08 0x01–0xFF

SocketID (secondary)c 0x09 0x01–0xFF

MaximumPrimaryToSecondaryPacketSized 0x0A 0x0000 or 0x0006–0xFFFF

MaximumSecondaryToPrimaryPacketSizee 0x0C 0x0000 or 0x0006–0xFFFF

MaximumOutstandingCreditf 0x0E 0x0000–0xFFFF

Creditg 0x10 0x0000–0xFFFF

aIndicates the outcome of the OpenChannel transaction. This field can take on the values shown in
Table 25.

bSpecifies the socket of the requested channel on the primary IEEE 1284.4 peer.
cSpecifies the socket of the requested channel on the secondary IEEE 1284.4 peer.
dIndicates the maximum packet size that will be used to send data from the primary to the secondary IEEE
1284.4 peer. A value of 0x0000 indicates primary-to-secondary data packets for this channel will not be
used. If the result value indicates an error, this field has no meaning.

eIndicates the maximum packet size that will be used to send data from the secondary to the primary IEEE
1284.4 peer. A value of 0x0000 indicates secondary-to-primary data packets for this channel will not be
used. If the result value indicates an error, this field has no meaning.

fIndicates the maximum outstanding credit requested by the target of this transaction for target to initiator
data. See 4.5.3 for details on credit.

gIndicates initial credit that the target of this command is granting the initiator. See 4.5.3 for details on
credit.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

30 Copyright © 2000 IEEE. All rights reserved.

5.4.4 Credit

The Credit transaction is part of the IEEE 1284.4 flow control mechanism. This transaction is used to grant
credit for a specific channel to the sending endpoint. See 4.5 for more details on flow control.

Multiple Credit transactions may be outstanding at any time, if each transaction refers to a different channel
and credit to issue them is available on the transaction channel (see 4.5.6).

Table 26 and Table 27 show the contents of the Credit and CreditReply packets including the packet
header. Table 28 shows the CreditReply result values.

Table 25—OpenChannelReply result values

Value Result

0x00 The command was successful.

0x04 Sufficient resources to support the requested connection are not currently available.
The channel is not open.

0x05 The connection has been denied. The channel is not open.

0x06 This channel is already open. The channel remains open, with credit unchanged by the
OpenChannel transaction.

0x09 There is no service on the specified socket. The channel is not open.

0x0C One or both of the packet sizes requested was invalid. (0x0001–0x0005) The channel is
not open.

0x0D The packet sizes requested in both directions were 0x0000. No data can be transferred.
The channel is not open.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 31

Table 26—Credit command packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x000B

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x03

SocketID (Primary)a

aSpecifies the socket on the primary IEEE 1284.4 peer of the channel for which credits
are being issued.

0x07 0x00–0xFF

SocketID (Secondary)b

bSpecifies the socket on the secondary IEEE 1284.4 peer of the channel for which credits
are being issued.

0x08 0x00–0xFF

AdditionalCreditc

cIndicates additional credit that the sender of this command is granting to the recipient of
the command.

0x09 0x0000–0xFFFF

Table 27—CreditReply packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x000A

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x83

Resulta

aIndicates the outcome of the Credit command. This field can take on the values shown
in Table 28.

0x07 (See Table 28)

SocketID (primary)b

bSpecifies the socket on the primary IEEE 1284.4 peer of the channel for which credits
are being issued.

0x08 0x00–0xFF

SocketID (secondary)c

cSpecifies the socket on the secondary IEEE 1284.4 peer of the channel for which credits
are being issued.

0x09 0x00–0xFF

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

32 Copyright © 2000 IEEE. All rights reserved.

5.4.5 CreditRequest

The CreditRequest transaction is used to request credit from the receiving endpoint. The transaction is also
used to modify the MaximumOutstandingCredit parameter (see 4.5.4). If the credit mode is set to
“unlimited” or “maintain credit” modes, the target of the CreditRequest transaction shall grant some or all
of the requested credit as quickly as possible, either through the CreditRequestReply or a subsequent
Credit transaction. Credit may be requested at any time.

Multiple CreditRequest transactions may be outstanding at any time if each transaction refers to a different
channel and credit to issue them is available on the transaction channel (see 4.5.6).

A MaximumOutstandingCredit value of zero (0) is not supported on the IEEE 1284.4 transaction channel.

Table 29 and Table 30 summarize the contents of the CreditRequest and CreditRequestReply packets,
including the packet header. Table 31 shows the CreditRequestReply result values.

Table 28—CreditReply result values

Value Result

0x00 The command was successful.

0x07 Credit overflow—the specified credit causes the total outstanding credit for this direction
on this channel to exceed 0xFFFF. On a credit overflow failure the target shall keep its
credit count as it was before the Credit command. The credit is ignored.

0x08 The command was rejected because this channel is not open.

Table 29—CreditRequest command packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x000B

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x04

SocketID (primary)a

aSpecifies the socket on the primary IEEE 1284.4 peer of the channel for which credit is being
requested.

0x07 0x00–0xFF

SocketID (secondary)b

bSpecifies the socket on the secondary IEEE 1284.4 peer of the channel for which credit is being
requested.

0x08 0x00–0xFF

MaximumOutstandingCreditc

cIndicates the maximum outstanding credit requested by the sender of this command. See 4.5.3.

0x09 0x0000–0xFFFF

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 33

5.4.6 CloseChannel

This transaction is used to close a channel between two IEEE 1284.4 endpoints. Either IEEE 1284.4 peer
can initiate a CloseChannel transaction, regardless of which peer initiated the OpenChannel transaction for
the channel.

The initiator of the CloseChannel transaction begins the transaction by sending a CloseChannel command
with the socket IDs of the channel it desires to close. Upon receiving the CloseChannel command, the target
of the transaction waits for any outstanding transactions for this channel to complete, and then sends the
CloseChannelReply. Once the target of the transaction has sent the CloseChannelReply, it may deallocate
the resources for the channel. The channel is considered to be closed only after the completion of a

Table 30—CreditRequestReply packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x000C

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x84

Resulta 0x07 (See Table 31)

SocketID (primary)b 0x08 0x00–0xFF

SocketID (secondary)c 0x09 0x00–0xFF

AdditionalCreditd 0x0A 0x0000–0xFFFF

aIndicates the outcome of the CreditRequest command. This field can take on the value
shown in Table 31.

bSpecifies the socket on the primary IEEE 1284.4 peer of the channel for which credit is
being requested.

cSpecifies the socket on the secondary IEEE 1284.4 peer of the channel for which credit
is being requested.

dIndicates additional credit that the sender of this reply is granting to the sender of the
CreditRequest command. A value of 0x0000 is a valid credit field value and indicates
no additional credit is being granted.

Table 31—CreditRequestReply result values

Value Result

0x00 The command was successful.

0x08 The command was rejected because this channel is not open.

0x0E The command was rejected because the requested credit mode is
not supported on the specified channel.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

34 Copyright © 2000 IEEE. All rights reserved.

successful CloseChannel transaction. Once the CloseChannel transaction starts, no new IEEE 1284.4
transactions may be initiated for the specified channel, but all IEEE 1284.4 transactions for that channel
must be completed before the CloseChannel transaction completes.

Prior to issuing a CloseChannel command, all data received from the peer device by the IEEE 1284.4 trans-
port shall be delivered to the receiving endpoint. Prior to responding to a CloseChannel command, all data
received from the peer device by the IEEE 1284.4 transport shall be delivered to the receiving endpoint if it
is possible to do so without delaying the response to the CloseChannel command.

If both IEEE 1284.4 peers initiate CloseChannel transactions for the same channel at the same time, both
CloseChannel transactions shall complete.

Since the IEEE 1284.4 transaction channel is needed for the IEEE 1284.4 conversation, it cannot be closed.

Multiple CloseChannel transactions may be outstanding at any time, if each transaction refers to a different
channel and credit to issue them is available on the transaction channel (see 4.5.6).

Table 32 and Table 33 show the contents of the CloseChannel and CloseChannelReply packets, including
the packet Header. Table 34 shows CloseChannelReply result values.

Table 32—CloseChannel command packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x0009

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x02

SocketID (primary)a

aSpecifies the socket on the primary IEEE 1284.4 peer of the channel that is being closed.

0x07 0x01–0xFF

SocketID (secondary)b

bSpecifies the socket on the secondary IEEE 1284.4 peer of the channel that is being
closed.

0x08 0x01–0xFF

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 35

Table 33—CloseChannelReply packet

Packet field Packet offset Field contents

PSID 0x00 0x00

SSID 0x01 0x00

Length 0x02 0x000A

Credit 0x04 0x01

Control 0x05 0x00

Command 0x06 0x82

Resulta 0x07 (See Table 34)

SocketID (primary)b 0x08 0x01–0xFF

SocketID (secondary)c 0x09 0x01–0xFF

aIndicates the outcome of the OpenChannel transaction. This field can take on the values
shown in Table 34.

bSpecifies the socket on the primary IEEE 1284.4 peer of the channel that is being closed.
cSpecifies the socket on the secondary IEEE 1284.4 peer of the channel that is being
closed.

Table 34—CloseChannelReply result values

Value Result

0x00 The command was successful.

0x03 The command was rejected because the requested channel was the IEEE
1284.4 transaction channel, which cannot be closed.

0x08 The command was rejected because this channel is not open.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

36 Copyright © 2000 IEEE. All rights reserved.

6. Data link service requirements

6.1 Overview

This clause describes the data link services required by IEEE 1284.4. This standard describes the require-
ments, but not the implementation, of these services. IEEE 1284.4 places no other requirements on the data
link. IEEE Std 1284.3-2000 [B4] is an example of a data link that meets all of these requirements.

6.2 Required services

6.2.1 Register/unregister

An IEEE 1284.4 implementation shall be able to register itself with the data link. The IEEE 1284.4 imple-
mentation will identify itself as being the processor for the IEEE 1284.4 protocol by using the IEEE 1284.4
protocol ID. Only one instance of the IEEE 1284.4 protocol is permitted to be registered with a particular
data link at any time. The IEEE 1284.4 implementation shall be able to unregister itself to allow another
IEEE 1284.4 implementation to register itself as the IEEE 1284.4 processor for the data link.

The following is an example of register and unregister services. In the example, a request is a call from a
data link client to the data link and an indication is a call from the data link to one of its clients.

DL_Register.request ProtocolID, AsyncBlk, Handle

ProtocolID
The identification number of the protocol served by this client of the data link. Only one IEEE 1284.4 client
is allowed. The protocol ID for the IEEE 1284.4 protocol is registered by the Internet Assigned Number
Authority and published in RFC 1700 [B7]. Its value is 0x0285.

AsyncBlk
A block of memory that contains whatever information is needed to deliver data link indications to the IEEE
1284.4 transport. The delivery mechanism is implementation-specific.

Handle
The address of a container to hold the client’s handle. This handle is used to identify the IEEE 1284.4 trans-
port in future data link requests.

DL_Unregister.request Handle

Handle
The client’s handle as returned in DL_Register.request.

6.2.2 Packet Data Transfer

The IEEE 1284.4 implementation shall be able to send packets of data to the IEEE 1284.4 peer. The data
shall be delivered to the IEEE 1284.4 peer, and only to the IEEE 1284.4 peer. It is assumed to be error free
and in the same order as it was presented to the data link. Data packet boundaries shall be maintained by the
data link. If no IEEE 1284.4 peer exists, the receiving data link shall discard the data. Data from other data
link clients shall not be delivered to either IEEE 1284.4 peer. The data link shall accept a destination device
address with all data to be sent and return the source device address with all delivered data. The following is
an example of data transfer services. An IEEE 1284.4 implementation uses the request to send data. The peer
data link uses the indication to deliver the data to the IEEE 1284.4 peer.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 37

DL_Data.request Handle, DeviceAddress, Data

Handle
The client’s handle as returned in the DL_Register.request.

DeviceAddress
Operating system dependent address of destination device for this data.

Data
The packet of data to be delivered.

DL_Data.indication DeviceAddress, Data

Data
The packet of data passed to the peer data link through DL_Data.request. The packet of data shall be in the
same order and form as it was presented to the remote data link in the DL_Data.request.

DeviceAddress
Operating system dependent address of source device for this data. Can be used in DL_Data.request to
deliver data back to the IEEE 1284.4 peer.

6.2.3 Asynchronous operation

The IEEE 1284.4 implementation shall be able to operate asynchronously. It shall not at any time be
required to poll the data link.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

38 Copyright © 2000 IEEE. All rights reserved.

Annex A

(informative)

Bibliography

[B1] Internet Assigned Numbers Authority (IANA) Protocol and Service Names List.

— Available via the Internet at http://www.iana.org/

— Available via file transfer protocol (FTP) at ftp://ftp.isi.edu/in-notes/iana/assignments/service-names

[B2] IEEE Std 1284-2000, IEEE Standard Signaling Method for a Bidirectional Parallel Peripheral Interface
for Personal Computers.

— This standard defines a signaling method for asynchronous, half-duplex, fully interlocked, bidirec-
tional parallel communications between hosts and printers or other peripheral devices.

[B3] IEEE Std 1284.1-1997, IEEE Standard for Information Technology—Transport Independent Printer/
System Interface (TIP/SI).

[B4] IEEE Std 1284.3-2000, IEEE Standard for Interface and Protocol Extensions to IEEE Std 1284-2000
Compliant Peripheral and Host Adapter Ports.2

— This standard extends IEEE Std 1284-1994 to provide port-sharing and data-link functionality.

[B5] IEEE Std 1394-1995, IEEE Standard for a High Performance Serial Bus.

[B6] MLC Packet Protocol Revision 3.8, Hewlett-Packard Company.

— More information regarding this document can be obtained from stds-1284@ieee.org.

[B7] RFC 1700, PPP Assigned Numbers List.

[B8] Winsock-2 API.

— Available at http://www.stardust.com.

2As this standard goes to press, IEEE Std 1284.3-2000 is approved but not yet published. The approved draft standard is, however,
available from the IEEE. Anticipated publication date is 29 December 2000. Contact the IEEE Standards Department at +1 (732) 562-
3800 for status information.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 39

Annex B

(normative)

Service names registry

B.1 Introduction

This annex is provided to explain how IEEE 1284.4 implementers can register service names to provide pub-
lic knowledge of services that are available and prevent different services from erroneously using the same
name. The Internet Assigned Numbers Authority (IANA) maintains a list of service names on the list titled
“Protocol and Service Names,” which is available both on its website (http://www.iana.org/) and on its file
transfer protocol (FTP) site (ftp://ftp.isi.edu/in-notes/iana/assignments/service-names). Implementers should
only register service names as needed; different names for the same service should be avoided. The registry
provides a method to avoid service name collisions.

B.2 Service-names list

The service-names list contains an alphabetical listing of each service name subscribing to the format as
described in the service-names file, as follows:

A protocol or service may be up to 40 characters taken from the set of uppercase letters, digits, and
the punctuation character hyphen. It must start with a letter, and end with a letter or digit.

Each service name is followed by a brief description of its use. Examples of protocols and services are
shown in the following table:

Service name Service description

BOOTP Bootstrap protocol

BOOTPC Bootstrap protocol client

BOOTPS Bootstrap protocol server

BR-SAT-MON Backroom SATNET monitoring

CFTP CFTP

CHAOS CHAOS protocol

CHARGEN Character generator protocol

IEEE-1284-4-TRANSACTION IEEE 1284.4 transaction processor (socket 0x00)

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

40 Copyright © 2000 IEEE. All rights reserved.

B.3 Registry process

Implementers of IEEE 1284.4 are encouraged to follow the following process to register their service name
with IANA:

a) Check the service-names file available at http://www.iana.org/ and ftp://ftp.isi.edu/in-notes/iana/
assignments/service-names to verify that the proposed service name has not already been registered.

b) Send e-mail using the template below to iana@iana.org and stds-1284@ieee.org requesting the new
service-name. The IANA web-site may provide updates to the template.

B.3.1 Service name registry request template

Subject: Protocol and Service Names Registry Request

Please add the following service name and description to the Protocol and Service Names list.

Service-name (40 characters maximum, letters/digits/hyphen only): <service-name>

Description (brief description, 1 sentence recommended): <description>

Contact Name (person to be contacted in case of any problems): <Name>

Contact Name e-mail: <e-mail address>

Contact Name Company: <company name>

B.3.2 Example

Subject: Protocol and Service Names Registry Request

Please add the following service name and description to the Protocol and Service Names list.

Service-name: XYZ-INPUT

Description: Input data stream for an XYZ

Contact Name: John Doe

Contact Name e-mail: john@anycompany.com

Contact Name Company: AnyCompany, Inc.

IANA will update the list as requests are approved. The IEEE 1284.4 registry coordinator will intervene only
if IANA has a problem completing a request. Questions regarding the registry process can be directed by
e-mail to the coordinator at stds-1284@ieee.org.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 41

Annex C

(informative)

IEEE 1284.4 architecture

Figure C.1 illustrates an example of the protocol architecture of several devices using IEEE 1284.4 and other
related protocols. The top of the figure shows devices on various physical links. The bottom of the figure
shows applications and drivers in a host. The center of the figure shows the various protocols required to
connect the applications and drivers to the devices.

Figure C.1—IEEE 1284.4 device architecture

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

42 Copyright © 2000 IEEE. All rights reserved.

Annex D

(informative)

Example IEEE 1284.4 application programming interface (API)

D.1 API overview

This example API is a sockets-based interface for use by clients and servers to access the services provided
by IEEE 1284.4. The API is modeled after the Winsock-2 API interface [B8], which is available at
http://www.stardust.com.

IEEE 1284.4 sockets and API sockets are not necessarily equivalent. IEEE 1284.4 sockets refer to an
endpoint to which or from which data is transmitted. API sockets refer not only to an endpoint, but also to a
particular connection to that endpoint. An IEEE 1284.4 connection is specified by a pair of IEEE 1284.4
socket identifiers, known as the primary and secondary socket IDs. A single API socket uniquely identifies
an API connection. More than one API socket can be mapped to the same local IEEE 1284.4 socket by the
IEEE 1284.4 implementation, as long as each API socket mapped to the same local IEEE 1284.4 socket
specifies a connection to a different remote IEEE 1284.4 socket.

See Figure C.1 for a sample mapping of Winsock-2 sockets to IEEE 1284.4 connections.

D.2 API Services

In the following entry point definitions, IN refers to parameters passed to the API and OUT refers to param-
eters passed from the API.

D.2.1 Socket

Socket establishes a new endpoint. The IEEE 1284.4 layer manages the allocation of IEEE 1284.4 sockets.
Neither clients nor servers need be aware of the management of IEEE 1284.4 sockets.

socket = Socket (
IN address_family
IN socket_type)

socket
A new socket allocated by the IEEE 1284.4 transport layer.

address_family
An address family specification. The address family for IEEE 1284.4 is “AF_12844”.

socket_type
A type specification for the new socket.

The following socket_type is supported by IEEE 1284.4:

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 43

SOCK_STREAM: Provides connection-based byte streams with an out-of-band data transmission
mechanism. The transport is free to divide or aggregate client buffers. In-band data shall not be
combined with out-of-band data. End-of-message data shall not be combined with non end-of-
message data.

Since the transports will not exchange the socket_type at the time the connection is opened, the transport cli-
ents must set the same socket_type for the sockets at both ends of the connection.

D.2.2 Bind

Bind assigns a name to a socket. A server uses bind to register its name so that it can be found through
service discovery. Bind will fail if service_name is already bound to another socket.

Bind (
IN socket,
IN service_name)

socket
A socket previously allocated by a call to socket().

service_name
The name by which the server wishes to be known. The name must follow the restrictions in 4.4.2 or must be
an explicit IEEE 1284.4 socket number. The format of the explicit IEEE 1284.4 socket number is operating-
system-dependent.

D.2.3 Listen

Listen allocates space for queuing incoming connection requests.

Listen (
IN socket)

socket
A socket previously allocated by a call to socket() and assigned a name or explicit socket number by a call
to bind().

D.2.4 Accept

Accept accepts new connections on a socket. When a connect request is received for that socket from the
remote transport, the IEEE 1284.4 transport layer allocates a new socket for that connection and the call to
accept() completes.

new_socket = Accept (
IN socket)

new_socket
A new socket allocated for this connection by the IEEE 1284.4 transport layer.

socket
A socket previously allocated by a call to socket(), assigned a name or explicit IEEE 1284.4 socket number
by a call to bind(), and placed in a listen state by a call to listen().

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

44 Copyright © 2000 IEEE. All rights reserved.

D.2.5 Connect

Connect opens a connection to a server.

Connect (
IN socket,
IN device_address,
IN service_name)

socket
A socket previously allocated by a call to socket().

device_address
Operating system dependent address of the device to which the connection is to be opened. The IEEE 1284.4
implementation may not interpret the device address. It may instead be passed to the appropriate data link
layer for interpretation.

service_name
Name or explicit IEEE 1284.4 socket number of the service to which the connection is to be opened.

D.2.6 Send

Send data over an open connection.

Send (
IN socket,
IN data,
IN out-of-band_flag,
IN end-of-message_flag)

socket
A socket to a connection opened by a call to accept() or connect().

data
Buffer of data to be sent over the connection.

out-of-band_flag
Flag indicating that the data is out-of-band. IEEE 1284.4 shall process out-of-band data in the same manner
as in-band data. In-band data shall not be combined with out-of-band data. The receiver of out-of-band data
shall be notified that the data is out-of-band.

end-of-message_flag
Flag indicating that the data is the end of a message. IEEE 1284.4 shall process end-of-message data in the
same manner as non end-of-message data. End-of-message data shall not be combined with non end-of-
message data. The receiver of end-of-message data shall be notified that the data is the end of a message.

D.2.7 Receive

Receive data over an open connection. The receive call completes when data is received or when the connec-
tion is terminated by the remote client.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 45

Receive (
IN socket,
OUT data,
OUT out-of-band_flag,
OUT end-of-message_flag)

socket
A socket to a connection opened by a call to accept() or connect().

data
Buffer for data to be received over the connection.

out-of-band_flag
Flag indicating that the data is out-of-band.

end-of-message_flag
Flag indicating that the data is the end of a message.

D.2.8 Shutdown

Disable sends and/or receives on a socket

Shutdown (
IN socket,
IN direction)

socket
A socket to a connection opened by a call to accept() or connect().

direction
The direction(s) to be disabled. Can be SEND, RECEIVE, or BOTH.

Shutdown() does not close the socket. Resources allocated to the socket will remain reserved until the
socket is closed using CloseSocket().

D.2.9 CloseSocket

CloseSocket releases a socket. If the socket has an open connection, the connection is closed before the
socket is released.

CloseSocket (
IN socket)

socket
A socket previously allocated by a call to socket() or accept().

D.2.10 SetSockOpt

SetSockOpt sets socket options. Since the client is not required to call SetSockOpt, the implementation shall
establish reasonable default values for each of the socket options.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

46 Copyright © 2000 IEEE. All rights reserved.

SetSockOpt (
IN socket,
IN option_name,
IN option_value)

socket
A socket previously allocated by a call to socket() or accept().

option_name
The socket option for which the value is to be set.

option_value
The buffer in which the value for the requested option is supplied.

D.2.11 GetSockOpt

GetSockOpt returns the current socket options.

GetSockOpt (
IN socket,
IN option_name,
OUT option_value)

socket
A socket previously allocated by a call to socket() or accept().

option_name
The socket option for which the value is to be retrieved.

Option_name Description

outgoing packet length If there is no open connection to this socket, sets the maximum outgoing packet
length. IEEE 1284.4 shall attempt to establish when opening a connection to this
socket.

If there is an open connection to this socket, the maximum outgoing packet length
may not be changed.

incoming packet length If there is no open connection to this socket, sets the maximum incoming packet
length. IEEE 1284.4 shall attempt to establish when opening a connection to this
socket.

If there is an open connection to this socket, the maximum incoming packet length
may not be changed.

maximum outstanding
credit

If there is no open connection to this socket, sets the MaximumOutstandingCredit
value. IEEE 1284.4 shall request when opening a connection to this socket (see
4.5.4).

If there is an open connection to this socket, IEEE 1284.4 shall use CreditRequest
to request a change to the actual MaximumOutstandingCredit value for the open
connection.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 47

option_value
The buffer in which the value for the requested option is to be returned.

D.3 API Usage

D.3.1 Servers

Servers first establish a socket by calling Socket() and then bind their service name to that socket by calling
Bind(). Once the socket has been allocated, servers call Listen() to establish an incoming request queue,
and then call Accept() to wait for a connection request. When a client requests a connection, Accept() will
complete with a new socket for the now open connection. If the server can accept more concurrent connec-
tions, it may call Listen() again with the original socket. When the server is finished using a socket, it
releases the socket by calling Shutdown() followed by CloseSocket().

Once a connection is open, servers can use Send() and Receive() to transfer data across the open connec-
tion.

D.3.2 Clients

Clients establish a socket by calling Socket(); they need not bind a name to that socket. Once the socket has
been allocated, the client can request a connection by calling Connect(). When Connect() completes, the
connection is open. When the client is finished using a socket, it releases the socket by calling Shutdown()
followed by CloseSocket().

Once a connection is open, clients can use Send() and Receive() to transfer data across the open connection.

Option_name Description

maximum outgoing packet length If there is no open connection to this socket, returns the maximum outgoing
packet length. IEEE 1284.4 shall attempt to establish when opening a connec-
tion to this socket.

If there is an open connection to this socket, returns the maximum outgoing
packet length IEEE 1284.4 established when opening the connection.

maximum incoming packet length If there is no open connection to this socket, returns the maximum incoming
packet length. IEEE 1284.4 shall attempt to establish when opening a connec-
tion to this socket.

If there is an open connection to this socket, returns the maximum incoming
packet length IEEE 1284.4 established when opening the connection.

maximum outstanding credit If there is no open connection to this socket, returns the MaximumOutstand-
ingCredit value IEEE 1284.4 shall request when opening a connection to this
socket (see 4.5.4).

If there is an open connection to this socket, returrns the current Maximum-
OutstandingCredit value for the open connection.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

48 Copyright © 2000 IEEE. All rights reserved.

D.4 Mapping API services to IEEE 1284.4 transactions

This subclause describes a sample mapping of API services to IEEE 1284.4 transactions. Other mappings
are possible and implementation-dependent.

D.4.1 Socket ()

No IEEE 1284.4 transactions required. An available, local IEEE 1284.4 socket is mapped to this API socket.

D.4.2 Bind ()

No IEEE 1284.4 transactions required.

D.4.3 Listen ()

No IEEE 1284.4 transactions required.

D.4.4 Accept ()

No IEEE 1284.4 transactions required.

D.4.5 Connect ()

Init, if there is no current IEEE 1284.4 conversation with the device.

GetSocketID, to map the service name to a IEEE 1284.4 socket ID.

OpenChannel, to open a channel to the server.

D.4.6 Send ()

No IEEE 1284.4 transactions are required. The data is sent when there is credit to do so.

D.4.7 Receive ()

Credit, to grant credit for available buffers, if it has not yet been granted.

D.4.8 Shutdown ()

No IEEE 1284.4 transactions required.

D.4.9 CloseSocket ()

CloseChannel, if channel is open.

Exit, if all channels are closed and the IEEE 1284.4 implementation chooses to terminate the conversation.

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 49

D.4.10 SetSockOpt ()

CreditRequest, to change the MaximumOutstandingCredit parameter if requested.

D.4.11 GetSockOpt ()

No IEEE 1284.4 transactions required.

IEEE
Std 1284.4-2000 IEEE STANDARD FOR DATA DELIVERY AND

50 Copyright © 2000 IEEE. All rights reserved.

Annex E

(informative)

Implementation issues

E.1 Example of simple device

A simple IEEE 1284.4 printing device might implement a physical layer (e.g., IEEE 1284), a data link layer
(e.g., IEEE 1284.3), IEEE 1284.4, and two services [e.g., a page description language (PDL) and a device
management language (DML)]. IEEE 1284.4 would be the only client of the data link layer. The PDL could
be registered on socket 0x01 and the DML could be registered on socket 0x02. The PDL service could sup-
port one concurrent connection and the DML could support two or three concurrent connections. A host
printing application could open a connection to the PDL, send a print job using that connection, and then
close the connection. It might also open a connection to the DML to control the device. Another printing
application would have to wait until the first application had closed the PDL connection before it could open
its own connection. There might also be a management application using an open connection to the DML to
monitor device status.

E.2 Data transfer efficiency

The efficiency of data transfer using IEEE 1284.4 is mainly determined by several factors:

a) Protocol overhead

b) Crediting overhead

Protocol overhead refers to the extra bytes required for IEEE 1284.4 headers in the byte stream. IEEE
1284.4 headers are 6 bytes long, so each data packet carries 6 bytes of overhead, regardless of the amount of
data in the packet. If the amount of data to be transferred is n bytes, the number of packets is n/(amount of
data per packet). Therefore the total protocol overhead is (6 × n)/(amount of data per packet). Using larger
packets reduces the total protocol overhead. Implementers should consider this when choosing packet sizes.

Credit transactions or zero-payload data packets are required for flow control on channels with data flowing
in only one-direction (channels with data flowing in both directions can piggyback credit with their data,
which adds no overhead). Each Credit transaction requires the transfer of 21 bytes. Each zero-payload data
packet requires the transfer of 6 bytes.

The frequency of crediting depends upon the flow control algorithm being used and by the amount of buffer
space in the receiving device. Flow control algorithms that cause less frequent crediting and increased buffer
space reduce the crediting overhead. Implementers should consider this when designing crediting algorithms
and when allocating buffer space. Crediting also requires “turning around” half-duplex links (e.g., IEEE
1284), which also introduces overhead. Implementers should also consider this overhead.

E.3 Flow control algorithms

IEEE 1284.4 does not specify a required algorithm for flow control. The algorithms for allocating buffers to
channels and crediting those buffers to the peer (flow control) are up to the implementer. The flow control
algorithm can be as simple as issuing credit whenever half of the buffers in the channel’s buffer pool are
available and uncredited. This algorithm should keep both the sending client and receiving server operating

IEEE
LOGICAL CHANNELS FOR IEEE 1284 INTERFACES Std 1284.4-2000

Copyright © 2000 IEEE. All rights reserved. 51

in parallel. More complex algorithms that adjust to data arrival rate, the number of open channels and the
availability of resources are also possible.

E.4 Allocating buffers to avoid channel interaction

If an IEEE 1284.4 device allows more than one channel to be open concurrently, the device's buffer pool will
have to be distributed between the channels. The distribution of these buffers is important, as no data can be
transferred on a channel with no credit. Implementers should be careful to prevent one channel from using
all of the available buffers, as this could temporarily block transfer on the other channels.

E.5 Initialization negotiation

The initiator of the Init transaction should request the revision of the protocol it wants to establish when first
attempting to establish a conversation with an IEEE 1284.4 peer. If the target IEEE 1284.4 peer responds
with a failure indicating that it is unable to support the requested revision, the initiating peer may either:

a) Retry the Init transaction with a lower revision that it also supports, or

b) Retry the Init transaction with the revision set to the base revision (0x20) that all IEEE 1284.4 peers
are required to support.

All IEEE 1284.4 implementations are required to support the base revision so that all IEEE 1284.4 devices
are guaranteed the ability to hold a conversation using the functionality defined in this standard and referred
to as the base revision (0x20). However, it is left up to individual IEEE 1284.4 implementations to decide
how much revision negotiation to support.

E.6 Random back-off strategy for Init

Implementations shall provide a random back-off strategy used to successfully complete initialization when
both devices simultaneously issue Init transactions (see 5.3.1). The back-off time should be at least 100 ms.
The algorithm must be instance-specific so that two identical devices will successfully initialize. The
granularity and latency of the data-link layer should also be considered so as to provide a truly random back-
off on the transmission medium.

E.7 Enumerating services

The complete list of current services supported by a device may be enumerated using the GetServiceName
transaction. To retrieve the list, simply initiate GetServiceName once for each SocketID parameter from
0x01 to 0xFF. All 255 sockets must be searched to ensure that all currently advertised services have been
enumerated.

NOTE—The enumerated list contains all currently advertised services. A device’s services may appear or disappear as
functionality is added to or removed from the device.

